
An h-r moving mesh method for
one-dimensional time-dependent PDEs

Benjamin Ong1, Robert Russell2, and Steven Ruuth2

1 Institute for Cyber Enabled Resesarch, Michigan State University, East Lansing,
MI, 48824

2 Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6

Summary. We propose a new moving mesh method suitable for solving time-
dependent partial differential equations (PDEs) in R1 which have fine scale solution
structures that develop or dissipate. A key feature of the method is its ability to add
or remove mesh nodes in a smooth manner and that it is consistent with r-refinement
schemes. Central to our approach is an implicit representation of a Lagrangian mesh
as iso-contours of a level set function. The implicitly represented mesh is evolved
by updating the underlying level set function using a derived level set moving mesh
partial differential equation (LMPDE). The discretized LMPDE evolves the level set
function in a manner that quasi-equidistributes a specified monitor function. Bene-
ficial attributes of the method are that this construction guarantees that the mesh
does not tangle, and that connectivity is retained. Numerical examples are provided
to demonstrate the effectiveness of our approach.

1 Introduction
{sec:introduction}

To solve time-dependent partial differential equations (PDEs) numerically, a
method of lines approach is typically implemented. The PDE is discretized in
space, and the resulting system of ordinary differential equations (ODEs) are
integrated in time using a suitable time-integrator.

It is often advantageous to employ an adaptive spatial mesh if fine-scale
structures develop, propagate or disappear as the solution evolves. Examples
of such behavior can be seen in combustion simulations [1, 13], shock formation
and propagation in compressible fluid flow and shear flows [11]. Ideally, the
mesh adaptation scheme clusters a higher density of grid points in a local,
possibly time-dependent, region of interest.

Two well-known approaches to performing mesh adaptation are (i) h-
refinement methods which coarsen or refine a mesh locally by varying the
number of nodes, and (ii) r-refinement methods, or moving mesh methods,
which redistribute a fixed number of grid nodes, concentrating a higher den-
sity of grid nodes in desired regions. Much work has been done on h-refinement
methods; moving mesh methods are a more recent development [6]. Hybrid

2 Benjamin Ong, Robert Russell, and Steven Ruuth

approaches may also be contemplated, and related to our work here, several
h-r hybrid methods have been developed. Capon and Jimack [2] consider a
method which utilizes r-adaptivity to move a finite element mesh, refining
or coarsening the mesh using h-adaptivity locally as necessary, while Wang
and Tang [12] developed a method which utilizes r-adaptivity to move an un-
derlying coarse mesh which is refined using h-adaptivity at every time step.
In both cases, mesh nodes are added or removed locally, often changing the
connectivity of a mesh.

Our approach also belongs to the class of h-r hybrid methods, however it is
fundamentally different in that the local density of mesh nodes is determined
by the monitor function. Naturally, as local structures form and dissipate this
causes the number of mesh nodes across the domain to vary. Connectivity
of the mesh, however, does not vary because nodes are added or removed
at the domain boundary. We further remark that underlying our method
is an implicit (level set) representation of the mesh, where the location of
the mesh nodes is embedded as level contours of a level set function. By
construction, the level set representation circumvents all mesh crossing events;
in one spatial dimension, mesh crossing would occur if two neighboring nodes,
xk(t) < xk+1(t), switch orderings at a later time, t + ∆t, i.e. xk(t + ∆t) >
xk+1(t+∆t). We note that the level set representation of grid nodes has been
considered in earlier works [10]. Our study builds upon these by incorporating
the most recent techniques for mesh evolution [6].

The remainder of the paper is divided into four main sections. In Section 2,
the notion of equidistribution is reviewed, the notion of quasi-equidistribution
is introduced, and de Boor’s algorithm is outlined. In Section 3.2, the implicit
representation of a mesh using level set functions is reviewed, and level set
evolution equation which drives a mesh towards equidistribution is derived,
along with boundary conditions for r and h− r adaptivity. Application of the
h− r algorithm is illustrated in Section 4, and concluding remarks are given
in Section 5.

2 Review
{sec:review}

This section begins with reviews of the notions of monitor functions and
equidistribution. Subsequently, quasi-equidistributed grids is introduced, fol-
lowed by an outline of de Boor’s algorithm.

2.1 Monitor Functions

Consider PDEs of the form

ut(x, t) = f(t, u, ux, uxx, . . .), x ∈ [a, b], t ≥ 0, (1){eqn:pde}
u(x, 0) = g(x).

An h-r moving mesh method for one-dimensional time-dependent PDEs 3

with solution u(x, t). A monitor function, ρ(u(x, t)), is generally chosen as
some quantitative measure of how u(x, t) changes. A popular choice is the
scaled arc-length monitor function

ρ(u(x, t)) =
√

1 + β‖∂xu‖2 ≥ 1, (2){eqn:arclength}

which is relatively large (ρ � 1) in regions with large variation, and is rela-
tively small (ρ ≈ 1) elsewhere. Another popular choice is the scaled curvature
monitor function,

ρ(u(x, t)) =
√

1 + β‖∂xxu‖2 ≥ 1. (3) {eqn:curvature}

2.2 Equidistribution
{sec:equidistribution}

We consider the general case where the monitor function has an explicit space
and time dependence, ρ(x, t). Traditional moving mesh methods seek to evenly
distribute monitor functions using a fixed number of nodes [3]. Consider the
set of (N + 1) grid nodes

x0 = a < x1(t) < · · · < xN−1(t) < xN = b.

Definition 1. A set of (N+1) mesh nodes, {xj(t)}Nj=0, equidistributes a mon-
itor function, ρ(x, t), on the interval [a, b] if the integral of the monitor func-
tion is equally distributed in each sub-interval, [xj−1(t), xj(t)],∫ xj(t)

xj−1(t)

ρ(x, t) dx =
1
N

∫ b

a

ρ(x, t) dx = α(t), ∀j = 1, 2, . . . , N, (4) {eqn:equidistribution_usual}

where α(t), is independent of space. {defn:equidistribution}

2.3 Quasi-equidistribution

Suppose it is desirable that α(t), the integral of the monitor function in each
subinterval, is constant in time, i.e., α(t) = α0. This might arise for example,
if ρ is some error estimate, and a control of the total error in each interval of
the domain is sought. If the number of intervals is fixed, then it is not possible
in general to find a set of mesh nodes which can keep α(t) = α0. By allowing
for a variable number of intervals, it is possible to keep α(t) = α0 everywhere
except in the final interval, where∫ xN (t)

xN−1(t)

ρ(x, t) dx < α(t)

This leads us to the notion of equidistribution with a variable number of
intervals in the domain:

4 Benjamin Ong, Robert Russell, and Steven Ruuth

Definition 2. Suppose that a set of (N0 +1) mesh nodes, {xj(0)}N0
j=0, equidis-

tributes a monitor function, ρ(x, 0) at some initial time t = 0, i.e.,∫ xj(0)

xj−1(0)

ρ(x, 0) dx =
1
N0

∫ b

a

ρ(x, 0) dx = α0, ∀j = 1, 2, . . . , N0.

Then at time t,

N(t) = dN0

∫ b

a
ρ(x, t) dx∫ b

a
ρ(x, 0)

e

intervals are required to quasi-equidistribute ρ(x, t), where (N(t) + 1) mesh
nodes quasi-equidistributes a monitor function, ρ(u(x, t)), on the interval [a, b]
if x0(t) = a, xN(t)(t) = b, and∫ xj(t)

xj−1(t)

ρ(x, t) dx = α0 ∀j = 1, 2, . . . , N(t)− 1,

and ∫ xN(t)

xN(t)−1(t)

ρ(x, t) dx ≤ α0.

2.4 de Boor’s algorithm

A method to generate an equidistributed mesh which satisfies Definition 1
at a discrete time level t = tn is de Boor’s algorithm [4]. We shall use de
Boor’s algorithm, Algorithm 1, to initialize an equidistributed mesh later in
our h-r-algorithm (Section 4).

To equidistribute a time-dependent monitor function, ρ(x, t), and conse-
quently evolve grids, one can implement de Boor’s algorithm at each discrete
time level. on such implementation is described in Algorithm 2. While de
Boor’s algorithm is generally successful at generating equidistributed grid
points {xj(tn)}, it is too expensive to apply at each time step, and there
is no control over how smoothly the mesh changes from time level tn to time
level tn+1. Furthermore, de Boor’s algorithm does not extend to Rn. This
motivates our development of moving mesh equations which smoothly evolve
implicit representations of grids towards equidistribution.

3 Hybrid h− r algorithm

To allow for the smooth addition or deletion of mesh nodes, we will utilize an
implicit representation of an equidistributed mesh. In this section, the implicit
representation of a mesh is introduced and then evolution equations, also
referred to as Level set Moving mesh PDEs (LMPDE) are derived. Boundary
conditions which lead to r and h− r adaptivity are discussed.

An h-r moving mesh method for one-dimensional time-dependent PDEs 5

Input: endpoints {a, b}; number of intervals N ; monitor function ρ(x) ≥ 1;
initial mesh, [x0, x1, . . . , xN]

Output: Equidistributed mesh, [x0, x1, . . . , xN] (equidistributes ρ(x))
1 Compute integral of the monitor function in each subinterval

Sj = (xj − xj−1)

„
ρ(xj−1) + ρ(xj)

2

«
, j = 1, . . . , N,

2 while (max
1≤j≤N

Sj − min
1≤j≤N

Sj) > TOL do

3 Construct the piecewise linear function

I(x) = (x− xj−1)

„
ρ(xj−1) + ρ(xj)

2

«
+

j−1X
r=1

Sr for x ∈ (xj−1, xj)

4 Find {yj} such that I(yj) =
j

N
I(b), j = 0, . . . , N

5 Set {xj} ← {yj}, j = 0, . . . , N.
6 Compute integral of the monitor function in each subinterval

Sj = (xj − xj−1)

„
ρ(xj−1) + ρ(xj)

2

«
, j = 1, . . . , N,

7 end{alg:deboor}
Algorithm 1: de Boor’s algorithm computes an equidistributed mesh
for a prescribed monitor function ρ(x) ≥ 1. Note that ρ is independent
of time for this algorithm.

Input: endpoints {a, b}; number of intervals N ; monitor function ρ(x, t);
initial time t0; final time T ; time step ∆t.

1 set n = 1; set tn = t0
2 set x(t0) to be equispaced in the desired domain.
3 while tn < T do
4 x(tn) = deBoor(a, b,N, ρ(·, tn),x(tn−1))
5 set t← t+∆t; set n← n+ 1.

6 end{alg:simple_moving_mesh}
Algorithm 2: One can generate a simple moving mesh by using de
Boor’s algorithm to regenerate an equidistributed mesh for each discrete
time level.

6 Benjamin Ong, Robert Russell, and Steven Ruuth

3.1 Implicit mesh representation

In an explicit representation of a mesh, the mesh points, {xj(t)} are known
and evolved directly. In an implicit representation of a mesh, the mesh points
are the iso-contours of an evolving level set function.

Suppose a monitor function ρ(x, 0) ≥ 1 is given. Consider the level set
function

ψ(x, 0) =
∫ x

a

ρ(x̃, 0) dx̃, (5){eqn:level_set_init}

and the contour levels

cj =
j

N

∫ b

a

ρ(x, 0) dx, j = 0, . . . , N. (6){eqn:init_level_contours}

By construction, the iso-contours of the level set function ψ(x, 0), i.e.

{xj(0)} = {xj(0) |ψ(xj(0), 0) = cj } , j = 0, . . . , N,

give the equidistributed mesh.
For example, suppose

u(x, 0) = a(exp (−(b(x− c))2) + tanh (d(x− e))) (7){eqn:ex_u}

with a = 20, b = 40, c = 0.18, d = 40, e = 0.5. Then the scaled arc-length
monitor function (2) with β = 1/1000 is plotted in Figure 1(a). The level
set function, approximated using a trapezoid quadrature approximation to
equation (5), is plotted along with its iso-contours (dashed blue lines) and the
corresponding adaptive grid (red crosses) in Figure 1(b). Figure 1(c) compares
the piecewise linear reconstructions of the function u given by equation (7)
using the a uniform grid and the equidistributed grid specified by the level
set function.

3.2 Evolution equation
{sec:evolution}

For an evolving mesh, the equidistribution principle is satisfied by finding
iso-contours of the evolving level set function

ψ(x, t) =
∫ x

a

ρ(x̃, t) dx̃. (8){eqn:lset}

Taking a derivative with respect to x gives ψx = ρ(x, t), or equivalently

ψx(x, t)
ρ(x, t)

= 1. (9){eqn:evolve0}

Taking a second derivative with respect to x gives

An h-r moving mesh method for one-dimensional time-dependent PDEs 7

0 0.5 1
0

10

20

30

x

ρ

(a) Monitor Function

0 0.5 1
0

1

2

3

x

ψ

(b) Level Set Function

0 0.5 1
−20

−10

0

10

20

(c) Adaptive Grid

Fig. 1: (a) shows the monitor function of a prescribed function u. (b) shows the level
set function and the iso-contours as defined by equations (5) and (6). The plot in
(c) shows the prescribed function u and the linear interpolant formed when using a
uniform mesh (blue) and an equidistributed mesh (red){fig:levelset_ex}

∂

∂x

(
1

ρ(x, t)
∂

∂x
ψ(x, t)

)
= 0. (10){eqn:evolve1}

To approximate the solution of these equations, the corresponding descent
equations

ψ̇ = −1
τ

∂

∂x

(
1

ρ(x, t)
∂

∂x
ψ(x, t)

)
, (LMPDE5){eqn:LMPDE5}

may be evolved, where ψ̇ = ψt and τ is a relaxation parameter. Notably,
(LMPDE5) strongly resembles MMPDE5 in [7].

Alternatively, we can perturb equation (10) in a similar fashion to [7] to
derive other evolution equations for the level set function. If we require that
the iso contours of the level set function give an equidistributed grid at some
later time t+ τ , where 0 < τ � 1, then the following equation must hold:

∂

∂x

(
ψx(x, t+ τ)
ρ(x, t+ τ)

)
= 0. (11) {eqn:pertqsep}

Using the expansions

∂

∂x
ψ(x, t+ τ) =

∂

∂x
ψ(x, t) + τ

∂

∂x
ψ̇(x, t) +O(τ2),

1
ρ(x, t+ τ)

=
1

ρ(x, t)
− τ ρ̇(x, t)

ρ(x, t)2
+O(τ2)

in equation (11), we obtain

∂

∂x

(
1
ρ

∂ψ

∂x

)
+ τ

∂

∂x

(
1
ρ

∂ψ̇

∂x

)
− τ ∂

∂x

(
ρ̇

ρ2

∂ψ

∂x

)
= 0, (LMPDE2) {eqn:LMPDE2}

where higher order terms have been dropped. Equation (LMPDE2) evolves the
level set function in such a way that the iso-contours give an equidistributed

8 Benjamin Ong, Robert Russell, and Steven Ruuth

mesh, even when ρ is independent of t. Noting that the term involving ρ̇ is
less important and can be dropped [7] gives the following simplified evolution
equation,

∂

∂x

(
1
ρ

∂ψ̇

∂x

)
= −1

τ

∂

∂x

(
1
ρ

∂ψ

∂x

)
, (LMPDE4) {eqn:LMPDE4}

which closely resembles the MMPDE4 equation in [7]. Other evolution equa-
tions corresponding to the MMPDEs can be generated in a similar fashion.

3.3 Building in h− r adaptivity through the boundary conditions

The LMPDEs evolve the level set function in such a way that the iso-contours
give a mesh which equidistributes a monitor function, however, boundary
conditions must still be specified. The boundary conditions will be used to
control how many iso-contours (or equivalently, how many grid nodes) are
used to equidistribute the monitor function.

In r-adaptivity, a fixed number of mesh nodes is used to equidistribute
a monitor function. One method to enforce this condition is to find mesh
trajectories which equidistribute a scaled monitor function,

ρ̃(x, t) =
ρ(x, t)∫ b

a
ρ(x̃, t) dx̃

.

Alternatively, in terms of boundary conditions for the level set function, r-
adaptivity corresponds to ψ̇(a, t) = ψ̇(b, t) = 0, or equivalently, the Dirichlet
conditions

ψ(a, t) = ψ(a, 0), ψ(b, t) = ψ(b, 0). (12){eqn:bc_r}

For h − r adaptivity, boundary conditions that allow for the addition or
removal of grid nodes are desired. From (8), ψ(x, t) =

∫ x

a
ρ(x̃, t) dx̃ which sug-

gests using ψ(a, t) = 0 and ψ(b, t) =
∫ b

a
ρ(x̃, t) dx̃. These Dirichlet boundary

conditions are not useful due to the sensitivity of approximating
∫ b

a
ρ(x, t) dx.

Instead, we enforce equation (9) at a boundaries, i.e., ψx(a, t) = ρ(a, t) or
ψx(b, t) = ρ(b, t). A well-posed problem for equation (10) is subsequently
formed by fixing the location of one grid point. Without loss of generality, we
specify that there is a grid node at x = a by choosing the boundary conditions

ψ(a, t) = 0, ψx(b, t) = ρ(b, t). (13){eqn:bc_hr}

4 Numerical Examples
{sec:numerics}

4.1 ρ(x, t) is specified

To illustrate that the evolution equations correctly evolve the implicit rep-
resentation of the mesh, we first consider the example from [7], where
ρ =

√
1 + u2

x is a prescribed, dynamic arclength monitor function of

An h-r moving mesh method for one-dimensional time-dependent PDEs 9

u(x, t) =
1
2

[1− tanh (c(t)(x− t− 0.4))] , t ∈ [0, 0.45] (14){eqn:hrr94_ex2}

c(t) = 1 +
103 − 1

2
[1 + tanh (100(t− 0.2))].

The function u(x, t) is a smooth wave that suddenly develops a steep gradient
at about t = 0.2 before propagating towards x = 1. Figure 2 shows a plot of
the solution, u. The arclength monitor function (2) with β = 1 is used for this
example. This is a good test problem to ensure that our algorithm adds grid
nodes smoothly as the layer develops, and then properly moves the mesh as
the layer travels to the right.

Fig. 2: Prescribed function, u from equation (14). {fig:ex1}

The idealized mesh trajectories are computed using Algorithm 2, where de
Boor’s algorithm is used to generate an equidistributed mesh for each discrete
time level. In Figure 3(a), the number of intervals is kept constant at 16, giving
the idealized r-adaptivity trajectories. In Figure 3(b), the same algorithm is
used with the number of intervals are varied, with

N(t) = d16

∫ b

a
ρ(x, t) dx∫ b

a
ρ(x, 0) dx

e

giving the idealized h− r adaptivity.
The evolution equation (LMPDE4) is discretized using centered finite dif-

ferences. [(
1

ρi+1 + ρi

)(
ψ̇i+1 − ψ̇i

xi+1 − xi

)
−
(

1
ρi + ρi−1

)(
ψ̇i − ψ̇i−1

xi − xi−1

)]
(15) {eqn:LMPDE4_discrete}

= −1
τ

[(
1

ρi+1 + ρi

)(
ψi+1 − ψi

xi+1 − xi

)
−
(

1
ρi + ρi−1

)(
ψi − ψi−1

xi − xi−1

)]
,

and the resulting system of ODEs, coupled with boundary conditions (12) or
(13), are solved using a backward Euler integrator. For illustration purposes,
the level set function is evolved on a computational uniform mesh with ∆x =
10−3. The relaxation parameter is set to τ = 10−4. The level set function is
initialized using a trapezoid quadrature approximation to equation(8), i.e.,

10 Benjamin Ong, Robert Russell, and Steven Ruuth

(a) Idealized r adaptivity (b) Idealized h−r adaptivity

Fig. 3: Idealized r adaptivity is shown in the left plot, where the total number of grid
nodes is held constant at 16. In the right plot, we show the idealized trajectories
which quasi-equidistributes the arclength monitor function. At time t = 0.45, 28
nodes are required to quasi-equidistribute ρ. {fig:ex1_ideal_mesh}

ψ0
i = ψ(xi, 0) =

i∑
j=1

(ρ(xj−1, 0) + ρ(xj , 0))
∆x

2
.

A total of 104 time steps are used. In Figure 4(a), the evolution equation is
solved with the boundary condition in equation (12), resulting in r adaptivity.
In Figure 4(b), the evolution equation is solved with the boundary condition in
equation (13), resulting in h−r adaptivity. In both cases, the mesh trajectories,
i.e. the iso contours of the evolving level set function, agree qualitatively with
the ideal mesh trajectories shown in Figure 3. Note that in Figure 4(b), nodes
are added smoothly through the right boundary to resolve the steepening
layer.

(a) Computed r adaptivity
using a computational static
uniform mesh

(b) Computed h − r adap-
tivity using a computational
static uniform mesh

Fig. 4: Mesh trajectories are obtained by evolving the level set function on a com-
putational static uniform mesh. Observe that when the boundary condition given in
equation (12) is used to solve the evolution equation, we recover r adaptivity. When
the boundary condition in equation (13) is used, we get h− r adaptivity as desired.{fig:ex1_computed_mesh}

An h-r moving mesh method for one-dimensional time-dependent PDEs 11

Using a fine uniform computational mesh for evolving the level set function
is not practical. By extracting the mesh location from the iso-contours, an
underlying moving mesh can be used to evolve the level set function. More
precisely, suppose the level set function has been computed at time level tn

using a computational mesh xn. Then,

1. Solve equation (15) for the level set function at time tn+1 using the mesh
xn.

2. Using first order interpolation, find the location of the quasi-equidistributed
mesh at time tn+1.

3. Denote this quasi-equidistributed mesh as the new computational mesh at
time tn+1, and re-initialize the level set function to the new computational
mesh

In Figure 5, mesh trajectories obtained by evolving the level set function using
the moving-mesh, reinitialization approach described above. The boundary
conditions (12) are used to recovery r-adaptivity. In Figure 5(a), 104 time
steps were used. Although the trajectories look qualitatively reasonable, there
are observable oscillations. If the number of time steps is increased to 105, the
oscillations are reduced, as shown in Figure 5(b) .

(a) Computed r adaptivity
using a computational mov-
ing mesh, 104 time steps

(b) Computed r adaptivity
using a computational mov-
ing mesh, 105 time steps

Fig. 5: Mesh trajectories are obtained by evolving the level set function on a com-
putational moving mesh consisting of 16 nodes. The mesh oscillations observed in
(a) are reduced in (b). {fig:computed_mesh_r_moving}

In Figure 6, mesh trajectories obtained by evolving the level set func-
tion using the moving-mesh, reinitialization approach. The boundary condi-
tions (13) are used to recovery h − r adaptivity. After the layer is formed
and begins to propagate, mesh nodes are inserted to keep the same number
of nodes in the layer, as nodes are used to to resolve the solution to the left
of the layer. The size of the oscillations decreases however as the number of
initial mesh nodes is increased, as shown in Figure 7.

12 Benjamin Ong, Robert Russell, and Steven Ruuth

(a) Computed hr adaptivity
using a computational mov-
ing h − r mesh, 104 time
steps

(b) Computed h − r adap-
tivity using a computational
moving h− r mesh, 105 time
steps

Fig. 6: Mesh trajectories obtained by evolving the level set function on a computa-
tional moving h−r mesh. The mesh initially consists of 16 nodes, though more nodes
are added as the layer appears. After a node is inserted, there is a brief relaxation
time. {fig:computed_mesh_hr_moving}

(a) 30 initial grid nodes (b) 40 initial grid nodes

Fig. 7: Mesh trajectories obtained by evolving the level set function on a computa-
tional moving h− r mesh. The number of initial mesh nodes are varied

. {fig:computed_mesh_hr_moving_more}

4.2 Solving a PDE using this hybrid h-r moving mesh method

There are several methods for coupling PDEs to mesh dynamics, a quasi-
Lagrange approach and a rezoning approach [9]. Since mesh nodes are being
added and removed in our formulation, we will utilize the rezoning approach
in this paper. In principle, a quasi-Lagrangian approach, augmented with
interpolation when necessary, can also be used with our formulation.

In a rezoning approach, one alternates between updating the mesh and
updating the solution to the PDE. More precisely, suppose the solution to
the physical PDE has been computed at time level tn using the mesh xn

i =
xi(tn), i = 1, . . . , N(tn); denote this as un

i = u(xn
i , t

n). Then, one computes
the solution to a PDE, un+1

i , at time level tn+1 using the mesh xn+1
i by:

1. Solving for the new mesh at time level tn+1, xn+1
i = xi(tn), i = 1, . . . , N(tn+1)

2. Interpolating the physical solution from the old mesh to the new one

An h-r moving mesh method for one-dimensional time-dependent PDEs 13

3. Discretizing the PDE on the new mesh, holding the mesh fixed for the
current time step.

Since the mesh xn+1
i is generated using the mesh and physical solution

(xn, un), the mesh consequently only adapts to the current solution un and
lags in time. Provided the time step is reasonably small or the solution does
not change abruptly in time, the moving mesh should resolve the solution
adequately.

We demonstrate that our hybrid h-r moving mesh method works with the
rezoning approach by solving viscous Burgers’ equation [5]:

ut + uux = εuxx, x ∈ [0, 1], t ∈ [0, 2], (16) {eqn:burger}
u(0) = u(1) = 0,

u(x, 0) = sin (2πx) +
1
2

sin (πx).

Initial and boundary conditions are chosen such that the solution develops a
steep layer of width ε, which subsequently moves towards x = 1. Because of
the boundary values, the wave amplitude diminishes over time. It is desirable
for our numerical method to add mesh nodes as the steep gradient develops,
and to remove mesh nodes as the wave amplitude diminishes.

A semi-discretization of Burgers’ equation (16) using centered finite dif-
ferences in space is given by

dui

dt
= −1

2

(
u2

i+1 − u2
i−1

xi+1 − xi−1

)
+ εui−1

(
2

xi−1 − xi

)(
1

xi−1 − xi+1

)
+ . . . (17) {eqn:burger_discrete}

εui

(
2

xi − xi−1

)(
1

xi − xi+1

)
+ εui+1

(
2

xi+1 − xi−1

)(
1

xi+1 − xi

)
.

Solution on a fine uniform mesh

When ε is small, e.g. ε = 10−4, a moving mesh or a fine uniform static mesh
is needed to resolve the steep front. Even with a fine uniform static mesh of
2001 points, oscillations are still visible in the solution. The ODE15i integrator
in MATLAB is used to compute the solution shown in Figure 8.

Solution using a moving mesh with rezoning.

Using the rezoning approach, the mesh and physical solution are solved al-
ternately. The arclength monitor function (2) with β = 10−2 is used. Addi-
tionally, as noted in [8], spatial mesh smoothing is generally necessary to keep
the mesh from varying too rapidly. This is accomplished by smoothing the
monitor function using

14 Benjamin Ong, Robert Russell, and Steven Ruuth

Fig. 8: Solution to Burgers’ equation at t = 0, 0.2, 0.4, 0.6, 0.8, 1.0, obtained using a
static uniform mesh of 2001 mesh points, with ε = 10−4. {fig:burger_static}

ρj =

p∑
k=−p

γ|k|ρj+k

p∑
k=−p

γ|k|
, j = 1, . . . , N − 1

with γ = 2
3 , p = 1.

In Figure 9, the updated mesh is computed by (i) evolving the level set
function using the discretized LMPDE4 (15) coupled with boundary condi-
tions (12), then (ii) finding the iso-contours using linear interpolation. The
physical solution is interpolated from the old mesh to the new one using lin-
ear interpolation. Then, the physical solution is updated to the new time level
using an IMEX discretization of equation (17). Finally, the level set function
is re-initialized, and the process repeated for the next time level. A total of
81 mesh nodes are used in the computation of Figure 9, although only 41
mesh nodes are shown in Figure 9(b) for visualization purposes. Our LMPDE
formulation clusters mesh nodes about the developing and propagating layer,
and correctly finds the solution to Burgers’ equation.

(a) Solution to Burgers’
equation

(b) r adaptive mesh

Fig. 9: Solution to Burgers’ equation using the rezoning approach. An r adaptive
mesh is obtained by using the boundary condition (12) together with the discretized
LMPDE (15).{fig:burger_r}

An h-r moving mesh method for one-dimensional time-dependent PDEs 15

In Figure 10, the h − r formulation, where the discretized LMPDE4 (15)
is solved with boundary conditions (13), also clusters mesh nodes about the
developing and propagating layer, and correctly finds the solution to Burgers’
equation, using the rezoning approach. The simulation starts with 81 mesh
nodes. The number of nodes varies during the simulation, as depicted in Fig-
ure 10(c).

(a) Solution to Burgers’
equation

(b) h− r adaptive mesh

(c) Number of mesh nodes

Fig. 10: Solution to Burgers’ equation using the rezoning approach. An h−r adaptive
mesh is obtained by using the boundary condition (13) together with the discretized
LMPDE (15).{fig:burger_hr}

5 Conclusions
{sec:conclusion}

In this paper, we have constructed, discussed and implemented a new moving
mesh h-r hybrid framework for solving time dependent partial differential
equations. The novelty of this idea is that it enables the addition or removal
of mesh nodes in a smooth manner, consistent with r-refinement schemes. The
underlying mechanism is an implicit representation and evolution of a mesh
using level set functions. This scheme is capable of solving problems which
are otherwise difficult to solve using a static uniform mesh, or a moving mesh
with a fixed number of nodes. Ongoing research considers the extension of
the hybrid hr refinement to R2, as well as the application of this method to
problems in plasma physics.

16 Benjamin Ong, Robert Russell, and Steven Ruuth

References

1. Weiming Cao, Weizhang Huang, and Robert D. Russell. A moving mesh method
in multiblock domains with application to a combustion problem. Numer. Meth-
ods Partial Differential Equations, 15(4):449–467, 1999.

2. P. J. Capon and P. K. Jimack. On the adaptive finite element solution of
partial differential equations using h-r-refinement. Technical report, University
of Leeds, 1996.

3. Carl de Boor. Good approximation by splines with variable knots. In Spline
functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton,
Alta., 1972), pages 57–72. Internat. Ser. Numer. Math., Vol. 21. Birkhäuser,
Basel, 1973.

4. Carl de Boor. Good approximation by splines with variable knots. II. In
Conference on the Numerical Solution of Differential Equations (Univ. Dundee,
Dundee, 1973), pages 12–20. Lecture Notes in Math., Vol. 363. Springer, Berlin,
1974.

5. RJ Gelinas, SK Doss, and K. Miller. The moving finite element method: ap-
plications to general partial differential equations with multiple large gradients.
Journal of Computational Physics, 40(1):202–249, 1981.

6. Weizhang Huang, Yuhe Ren, and Robert D. Russell. Moving mesh meth-
ods based on moving mesh partial differential equations. J. Comput. Phys.,
113(2):279–290, 1994.

7. Weizhang Huang, Yuhe Ren, and Robert D. Russell. Moving mesh partial dif-
ferential equations (MMPDES) based on the equidistribution principle. SIAM
J. Numer. Anal., 31(3):709–730, 1994.

8. Weizhang Huang and Robert D. Russell. Analysis of moving mesh partial dif-
ferential equations with spatial smoothing. SIAM J. Numer. Anal., 34(3):1106–
1126, 1997.

9. Weizhang Huang and Robert D. Russell. Adaptive moving mesh methods, volume
174 of Applied Mathematical Sciences. Springer, New York, 2011.

10. Guojun Liao, Feng Liu, Gary C. de la Pena, Danping Peng, and Stanley Osher.
Level-set-based deformation methods for adaptive grids. J. Comput. Phys.,
159(1):103–122, 2000.

11. Joe F. Thompson, Bharat K. Soni, and Nigel P. Weatherill, editors. Handbook
of grid generation. CRC Press, Boca Raton, FL, 1999.

12. Han Wang and Huazhong Tang. An efficient adaptive mesh redistribution
method for a non-linear Dirac equation. J. Comput. Phys., 222(1):176–193,
2007.

13. Li Yuan and Tao Tang. Resolving the shock-induced combustion by an adaptive
mesh redistribution method. J. Comput. Phys., 224:587–600, 2007.

